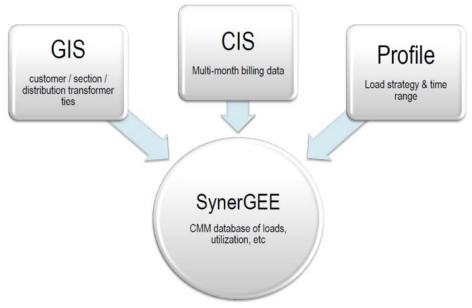


San Diego Gas & Electric

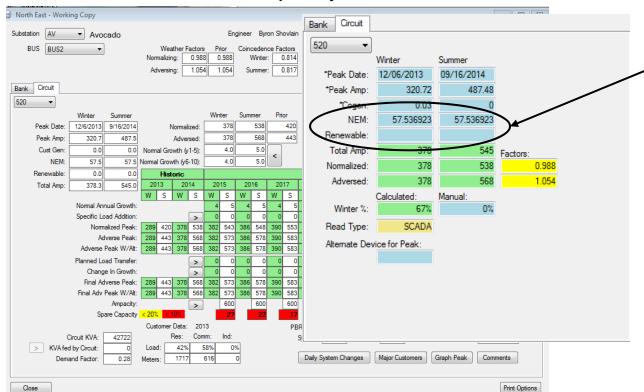

Distribution Resources Plan Tools and Methods

John Baranowski Electric Distribution Planning Manager

Powerflow Analysis

- SDG&E utilizes SynerGEE to model its distribution system
- Currently upgrading SynerGEE to perform advanced analysis
- Full deployment of upgraded SynerGEE expected in 2016
- Once upgrade is complete, time domain analysis will be included in yearly process

Acronyms:

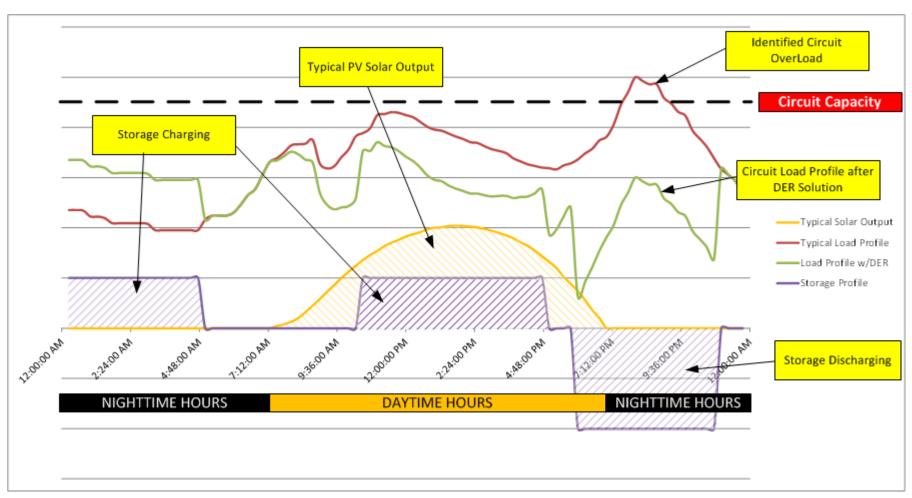

Geographic Information System (GIS) Customer Information System (CIS) Customer Management Module (CMM)

- Forecasting methodology modifications
 - Incorporate impacts of installed Distributed Energy Resources (DER)
 - Reduced or increased circuit/substation load due to installed Photovoltaic (PV)/Storage
 - Determine capacity factors for DER

Current Practice: Modified Net Energy Metering (NEM) and renewable output included in forecasted load

New Paradigm: Subtract modified NEM output from circuit and substation load

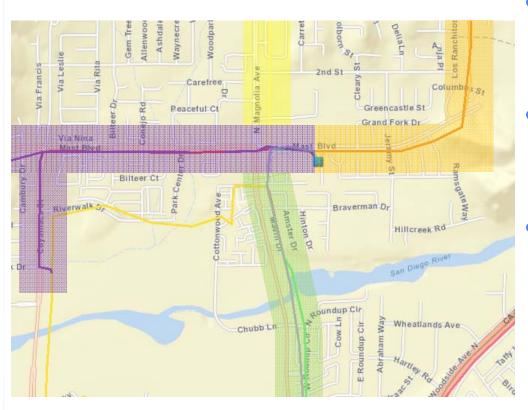
Integration Capacity



- Determine seasonal load curves at substation bus
- Overlay production/consumption curves of DER
 - PV Solar
 - Storage
 - Other DER
- Difference in curves may determine thermal capacity available for DER integration
 - Voltage considerations still apply
- SDG&E will identify size and required operating characteristics for DER installations based on net load curves

Integration Capacity – Paired Storage Use Case

Optimal Locations



- SDG&E will identify optimal locations for DER as part of its DRP via several criteria:
 - Capital project deferral or avoidance
 - Investment to accommodate DER is cost effective, or
 - Required Investment benefits customers as well as DER
- Optimal locations depend on:
 - System need (circuit/substation capacity, voltage support, etc.)
 - System capacity, i.e., how much DER can the location accommodate?
- SDG&E to provide updated Renewable Auction Mechanism (RAM) maps with optimal substations identified

Optimal Locations

- Identify zones of 'minimum impact' to distribution circuits
- Close to feeder
 - Minimize interconnection facilities
- Prioritized based on system need
 - Avoidance of capital upgrades
 - New substation transformer
 - New distribution circuit
 - Circuit Reconductor

Benefits Analysis

- SDG&E will identify capital upgrades to address capacity deficiencies
- For those deficiencies with enough lead time, a Request for Proposal (RFP) for DER solutions will be issued
- SDG&E will compare the net cost of the DER solution to the cost of the capital upgrade to determine the cost effective solution
 - \$DER Benefit = \$Cap cost \$NetDER cost \$DER integration cost

